Rutgers University: Algebra Written Qualifying Exam

January 2019: Problem 3 Solution

Exercise. Let A and B be operators in complex finite-dimensional vector space such that $A B-$ $B A=B$.
(a) Prove that for all integer $k>0$ there holds $A B^{k}-B^{k} A=k B^{k}$.

Solution.

Use induction:
Base case: $k=1$ we are given $A B-B A=B$.
Now suppose $A B^{k}-B^{k} A=k B^{k}$ for some $k \in \mathbb{N}$. Then

$$
\begin{aligned}
A B^{k} & =B^{k} A+k B^{k} \\
\Longrightarrow \quad B A B^{k} & =B\left(B^{k} A+k B^{k}\right) \\
& =B^{k+1} A+k B^{k+1} \\
\Longrightarrow \quad \Longrightarrow \quad(A B-B) B^{k} & =B^{k+1} A+k B^{k+1}, \quad \text { since } B A=A B-B \\
\Longrightarrow \quad A B^{k+1}-B^{k+1} & =B^{k+1} A+k B^{k+1} \\
\Longrightarrow \quad A B^{k+1}-B^{k+1} A & =(k+1) B^{k+1}
\end{aligned}
$$

So, by induction, for all integers $n>0$,

$$
A B^{n}-B^{n} A=n B^{n}
$$

(b) Prove that operator B is nilpotent.

Solution.

Let $k \in \mathbb{N}$ be arbitrary.

$$
\begin{aligned}
k \operatorname{Tr}\left(B^{k}\right) & =\operatorname{Tr}\left(k B^{k}\right) \\
& =\operatorname{Tr}\left(A B^{k}-B^{k} A\right) \\
& =\operatorname{Tr}\left(A B^{k}\right)-\operatorname{Tr}\left(B^{k} A\right) \\
& =\operatorname{Tr}\left(A B^{k}\right)-\operatorname{Tr}\left(A B^{k}\right) \\
& =0 \\
\Longrightarrow \operatorname{Tr}\left(B^{k}\right) & =0 \text { for all integers } k \geq 0
\end{aligned}
$$

Thus, B is nilpotent.

