Rutgers University: Algebra Written Qualifying Exam January 2019: Problem 3 Solution

Exercise. Let A and B be operators in complex finite-dimensional vector space such that AB - BA = B.

(a) Prove that for all integer k > 0 there holds $AB^k - B^k A = kB^k$.

Solution.	
Use induction:	
Base case: $k = 1$ we are given $AB - BA = B$.	
Now suppose $AB^{\kappa} - B^{\kappa}A = kB^{\kappa}$ for some $k \in \mathbb{N}$. Then	
$AB^k = B^k A + kB^k$	
$\implies \qquad BAB^k = B\left(B^kA + kB^k\right)$	
$=B^{k+1}A+kB^{k+1}$	
$\implies (AB-B)B^k = B^{k+1}A + kB^{k+1},$	since $BA = AB - B$
$\implies \qquad AB^{k+1} - B^{k+1} = B^{k+1}A + kB^{k+1}$	
$\implies \qquad AB^{k+1} - B^{k+1}A = (k+1)B^{k+1}$	
So, by induction, for all integers $n > 0$,	
$AB^n - B^n A = nB^n$	

(b) Prove that operator B is nilpotent.

Solution.

Let $k \in \mathbb{N}$ be arbitrary.

$$kTr(B^{k}) = Tr(kB^{k})$$

= $Tr(AB^{k} - B^{k}A)$
= $Tr(AB^{k}) - Tr(B^{k}A)$
= $Tr(AB^{k}) - Tr(AB^{k})$
= 0
 $\implies Tr(B^{k}) = 0$ for all integers $k \ge 0$

Thus, B is nilpotent.